TEORIA IN SINTESI

Richiami di algebra	2
Funzione esponenziale e funzione logaritmo	4
Richiami di geometria	5
Geometria analitica nel piano	9
Goniometria e trigonometria	12
Geometria analitica nello spazio	19
Limiti e funzioni continue	21
Derivate	26
Massimi, minimi e flessi	29
Studio delle funzioni	30
Integrali	31
Equazioni differenziali	34
Risoluzione approssimata di un'equazione	35
Integrazione numerica	36
Statistica	37
Calcolo combinatorio e probabilità	38
Distribuzioni di probabilità	39

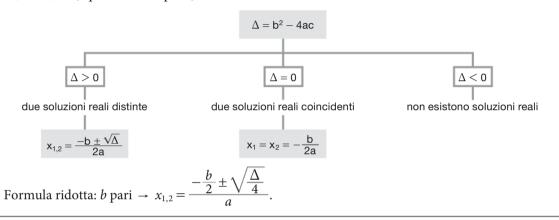
RICHIAMI DI ALGEBRA

Le equazioni di secondo grado

Un'equazione di secondo grado è riconducibile alla forma normale: $ax^2 + bx + c = 0$, $a \ne 0$

•
$$b = 0, c \neq 0$$
 (equazione pura) $\rightarrow ax^2 + c = 0 \rightarrow x^2 = -\frac{c}{a}$ se $-\frac{c}{a} < 0$: impossibile se $-\frac{c}{a} > 0$: $\rightarrow x_{1,2} = \pm \sqrt{-\frac{c}{a}}$

- $c = 0, b \neq 0$ (equazione spuria) $\to ax^2 + bx = 0 \to x(ax + b) = 0 \to x_1 = 0, x_2 = -\frac{b}{a}$
- b = c = 0 (equazione monomia) $\rightarrow ax^2 = 0 \rightarrow x_1 = x_2 = 0$
- $b \neq 0$, $c \neq 0$ (equazione completa). Il discriminante è $\Delta = b^2 4ac$.



Le disequazioni di secondo grado

Per risolvere le disequazioni $ax^2 + bx + c > 0$ e $ax^2 + bx + c < 0$ (con a > 0), si considera l'equazione associata $ax^2 + bx + c = 0$.

Se $\Delta > 0$, la disequazione:

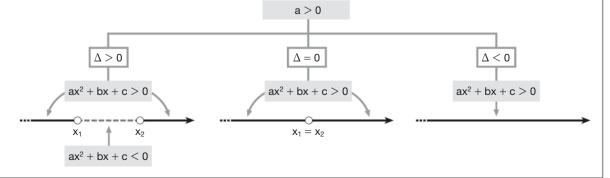
- $ax^2 + bx + c > 0$ è verificata dai valori esterni all'intervallo individuato dalle radici dell'equazione associata;
- $ax^2 + bx + c < 0$ è verificata dai valori interni.

Se $\Delta = 0$, la disequazione:

- $ax^2 + bx + c > 0$ è sempre verificata tranne che per il valore della radice doppia dell'equazione associata;
- $ax^2 + bx + c < 0$ non è mai verificata.

Se Δ < **0**, la disequazione:

- $ax^2 + bx + c > 0$ è sempre verificata;
- $ax^2 + bx + c < 0$ non è mai verificata.



■ Le equazioni e le disequazioni con il valore assoluto

$$|A(x)| = k$$
 se $k < 0$: non ha soluzione
se $k \ge 0$: $A(x) = \pm k$

$$|A(x)| < k$$
 se $k > 0$: $-k < A(x) < k \rightarrow \begin{cases} A(x) > -k \\ A(x) < k \end{cases}$ se $k \le 0$: non ha soluzione

$$|A(x)| > k$$
se $k > 0$: $A(x) < -k \lor A(x) > k$
se $k = 0$: $A(x) \neq 0$
se $k < 0$: sempre verificata

Le equazioni e le disequazioni irrazionali

se
$$n$$
 è dispari: $A(x) = [B(x)]^n$
se n è pari:
$$\begin{cases} A(x) \ge 0 \\ B(x) \ge 0 \\ A(x) = [B(x)]^n \end{cases}$$

se
$$n$$
 è dispari: $A(x) < [B(x)]^n$
se n è pari:
$$\begin{cases} A(x) \ge 0 \\ B(x) > 0 \\ A(x) < [B(x)]^n \end{cases}$$

se
$$n$$
 è dispari: $A(x) > [B(x)]^n$

$$\sup_{x \in B(x) > B(x)} \left\{ B(x) < 0 \middle| A(x) \ge 0 \middle| A(x) > [B(x)]^n \right\}$$

■ Le proprietà delle potenze

$$a^m \cdot a^n = a^{m+n}$$

$$\bullet \quad a^m \cdot b^m = (a \cdot b)^m$$

•
$$a^m$$
: $a^n = a^{m-n} \operatorname{con} a \neq 0$

•
$$a^m : b^m = (a : b)^m \text{ con } b \neq 0$$

$$(a^m)^n = a^{m \cdot n}$$

$$\bullet \quad a^{-n} = \frac{1}{a^n} \operatorname{con} a \neq 0$$

■ I prodotti notevoli e la scomposizione in fattori

•
$$(A + B)(A - B) = A^2 - B^2$$

•
$$(A \pm B)^3 = A^3 \pm 3A^2B + 3AB^2 \pm B^3$$

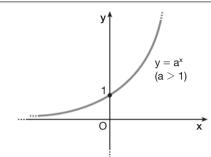
•
$$(A \pm B)^2 = A^2 \pm 2AB + B^2$$

•
$$A^3 \pm B^3 = (A \pm B)(A^2 \mp AB + B^2)$$

•
$$(A + B + C)^2 = A^2 + B^2 + C^2 + 2AB + 2AC + 2BC$$

FUNZIONE ESPONENZIALE E FUNZIONE LOGARITMO

■ La funzione esponenziale



- dominio: \mathbb{R} ;
- codominio: \mathbb{R}^+ ;
- funzione crescente in \mathbb{R} ;
- corrispondenza biunivoca;
- $a^x \to 0$ per $x \to -\infty$.
- $a^x \to +\infty$ per $x \to +\infty$.

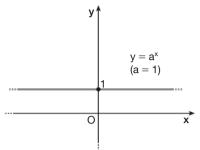
- ...
- dominio: \mathbb{R} ;
- codominio: \mathbb{R}^+ ;
- funzione decrescente in \mathbb{R} :

ō

 $y = a^x$

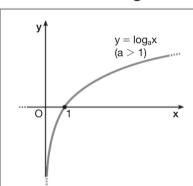
(0 < a < 1)

- corrispondenza biunivoca;
- $a^x \to 0$ per $x \to +\infty$.
- $a^x \to +\infty$ per $x \to -\infty$.

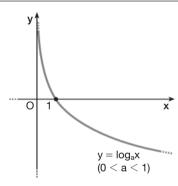


- ullet dominio: \mathbb{R} ;
- codominio: {1};
- funzione costante:
- funzione non iniettiva.

■ La funzione logaritmo



- dominio: \mathbb{R}^+ ;
- codominio: \mathbb{R} ;
- funzione crescente in \mathbb{R}^+ ;
- corrispondenza biunivoca;
- $\log_a x \to -\infty$ per $x \to 0$;
- $\log_a x \to +\infty$ per $x \to +\infty$.



- dominio: \mathbb{R}^+ ;
- ullet codominio: $\mathbb R$;
- funzione decrescente in \mathbb{R}^+ ;
- corrispondenza biunivoca;
- $\log_a x \to +\infty$ per $x \to 0$;
- $\log_a x \to -\infty$ per $x \to +\infty$.

Logaritmo di un prodotto

$$\log_a(b \cdot c) = \log_a b + \log_a c, (b > 0, c > 0)$$

Logaritmo di un quoziente

$$\log_a \frac{b}{c} = \log_a b - \log_a c, \quad (b > 0, c > 0)$$

Logaritmo di una potenza

$$\log_a b^n = n \cdot \log_a b, \qquad (b > 0, n \in \mathbb{R})$$

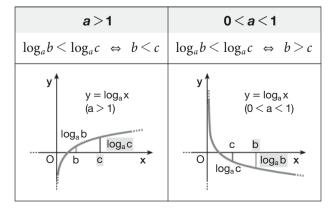
Cambiamento di base nei logaritmi

$$\log_a b = \frac{\log_c b}{\log_c a} \qquad a > 0, b > 0, c > 0$$
$$a \neq 1, c \neq 1$$

Disequazioni esponenziali

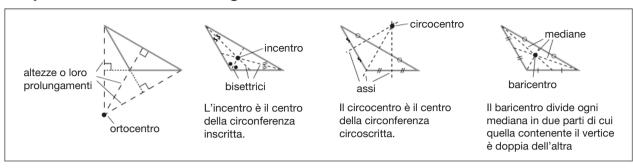
a>1	0 < a < 1
$a^t > a^z \Leftrightarrow t > z$	$a^t > a^z \Leftrightarrow t < z$
$y = a^{x}$ $(a > 1)$ a^{z} $z t \qquad x$	$y = a^{x}$ $(0 < a < 1)$ a^{t} $t z O x$

■ Disequazioni logaritmiche

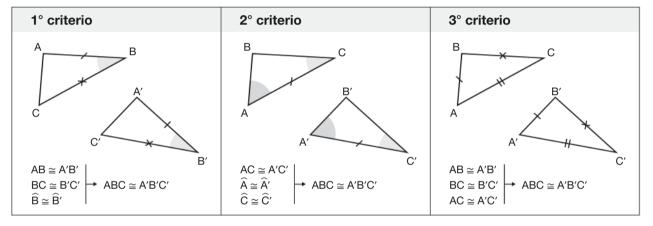


RICHIAMI DI GEOMETRIA

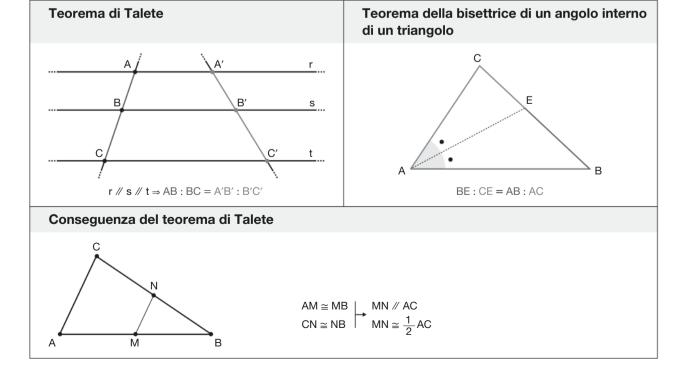
■ I punti notevoli di un triangolo



■ I criteri di congruenza dei triangoli

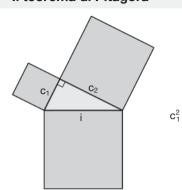


■ Il teorema di Talete



L'equivalenza e la similitudine

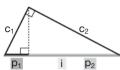
Il teorema di Pitagora



$$c_1^2 + c_2^2 = i^2$$

I teoremi di Euclide

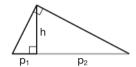
• Primo teorema di Euclide



$$i : c_1 = c_1 : p_1$$

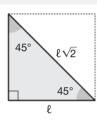
 $i : c_2 = c_2 : p_2$

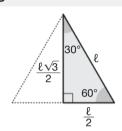
Secondo teorema di Euclide



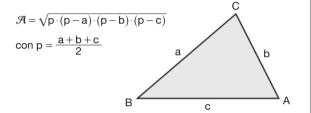
$$p_1:h=h:p_2$$

Relazioni fra i lati di triangoli notevoli



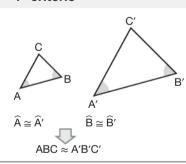


Formula di Erone

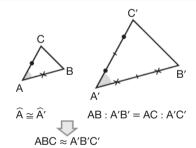


■ Criteri di similitudine dei triangoli

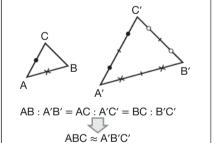
1° criterio



2° criterio

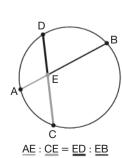


3° criterio

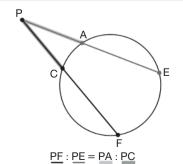


■ La similitudine nella circonferenza

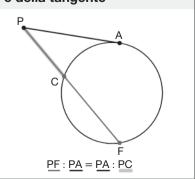
Teorema delle corde secanti



Teorema delle secanti

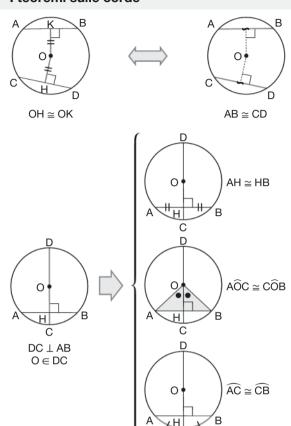


Teorema della secante e della tangente

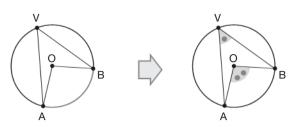


La circonferenza

I teoremi sulle corde

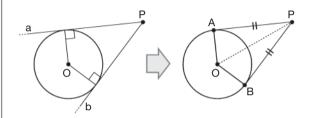


Angoli alla circonferenza e angoli al centro



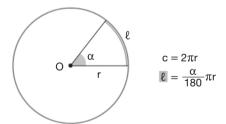
Ogni angolo alla circonferenza è la metà dell'angolo al centro corrispondente.

Tangente a una circonferenza da un punto esterno

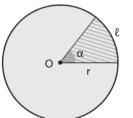


Se da un punto esterno a una circonferenza si conducono le rette tangenti, i segmenti di tangente risultano congruenti.

La lunghezza della circonferenza e l'area del cerchio

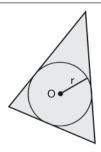


Misure della circonferenza (c) e dell'arco di angolo al centro α (ℓ).



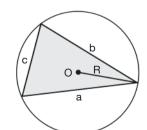
 $\boxed{S} = \frac{\alpha}{360} \pi r^2 = \frac{1}{2} \ell r$

Misure dell'area del cerchio (C) e dell'area del settore circolare di angolo al centro α (S).



 $r = \frac{\mathcal{R}}{p}$

Raggio del cerchio inscritto nel triangolo.

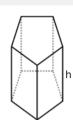


 $R = \frac{abc}{4 \mathcal{A}}$

Raggio del cerchio circoscritto al triangolo.

Formule di geometria solida

Prisma retto

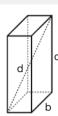


$$A_{\ell} = 2p \cdot h$$

$$A_{t} = A_{\ell} + 2A_{b}$$

$$V = A_{b} \cdot h$$

Parallepipedo rettangolo



$$A_b = ab$$

$$A_\ell = 2 (ac + bc)$$

$$A_t = 2 (ac + ab + bc)$$

$$V = a \cdot b \cdot c$$

$$d = \sqrt{a^2 + b^2 + c^2}$$

Cubo

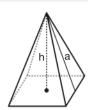
$$A_b = s^2$$

$$A_t = 6s^2$$

$$V = s^3$$

$$d = s\sqrt{3}$$

Piramide retta



$$A_{\ell} = p \cdot a$$

$$A_{t} = A_{\ell} + A_{b}$$

$$V = \frac{1}{3}A_{b} \cdot h$$

Tronco di piramide retta

$$A_{\ell} = (p + p') \cdot a$$

$$A_{t} = A_{\ell} + A_{b} + A'_{b}$$

$$V = \frac{1}{3} h (A_{b} + A'_{b} + A'_{b} + \sqrt{A_{b} \cdot A'_{b}})$$

Cilindro

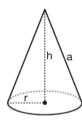
$$A_b = \pi r^2$$

$$A_\ell = 2\pi r \cdot h$$

$$A_t = 2\pi r (h + r)$$

$$V = \pi r^2 \cdot h$$

Cono



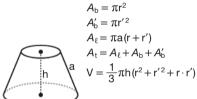
$$A_b = \pi r^2$$

$$A_\ell = \pi r a$$

$$A_t = \pi r (a + r)$$

$$V = \frac{1}{3} \pi r^2 \cdot h$$

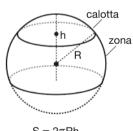
Tronco di cono



Sfera

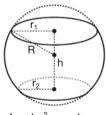
$$A = 4\pi r^2$$
$$V = \frac{4}{3}\pi r^3$$

Calotta e zona sferica



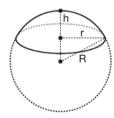
$$S = 2\pi Rh$$

Segmento sferico a due basi



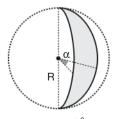
$$V = \frac{4}{3}\pi \left(\frac{h}{2}\right)^3 + \pi r_1^2 \frac{h}{2} + \pi r_2^2 \frac{h}{2}$$

Segmento sferico a una base



$$V = \frac{4}{3}\pi \left(\frac{h}{2}\right)^3 + \pi r^2 \frac{h}{2} = \frac{1}{3}\pi h^2 (3R - h)$$

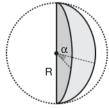
Fuso sferico



$$S_f = 2R^2\alpha^{rad} = \frac{\alpha^\circ}{90^\circ} + \pi R^2$$

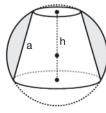
 α^{rad} : ampiezza del diedro in radianti $\alpha^{\circ}\,$: ampiezza del diedro in gradi

Spicchio sferico



$$V_s = \frac{2}{3}\alpha^{rad}R^3 = \frac{\alpha^\circ}{270^\circ}\pi R^3$$

Anello sferico



$$V_a = \frac{1}{6}\pi a^2 h$$

GEOMETRIA ANALITICA NEL PIANO

La distanza fra due punti $A(x_A; y_A)$ e $B(x_B; y_B)$ è data da: $\overline{AB} = \sqrt{(x_B - x_A)^2 + (y_B - y_A)^2}$.

Il **punto medio** del segmento $AB \stackrel{.}{e} M(x_M; y_M)$ con: $x_M = \frac{x_A + x_B}{2}, \quad y_M = \frac{y_A + y_B}{2}.$

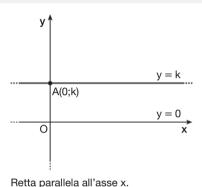
Il **baricentro di un triangolo** di vertici $A(x_A; y_A)$, $B(x_B; y_B)$, $C(x_C; y_C)$ è $G(x_G; y_G)$ con:

$$x_G = \frac{x_A + x_B + x_C}{3}, \quad y_G = \frac{y_A + y_B + y_C}{3}.$$

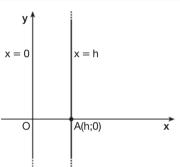
La **distanza di un punto** $P(x_0; y_0)$ **da una retta** r di equazione ax + by + c = 0 è uguale a: $d = \frac{\left| ax_0 + by_0 + c \right|}{\sqrt{a^2 + b^2}}$.

Il piano cartesiano e la retta

L'equazione di una retta

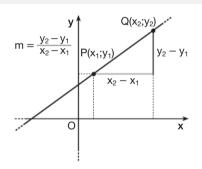


: : Retta parallela all'asse y.

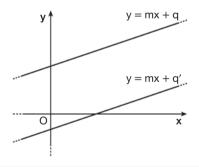


Retta non parallela agli assi passante per i punti $P_1(x_1;y_1)$ e $P_2(x_2;y_2)$

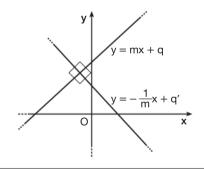
Coefficiente angolare



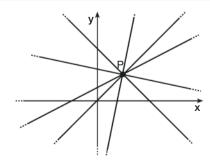
Rette parallele



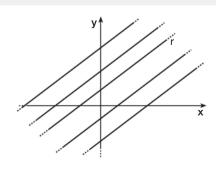
Rette perpendicolari



I fasci di rette



Fascio proprio di rette per un punto P: insieme di tutte le rette del piano passanti per P. P è detto centro del fascio.

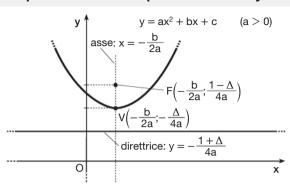


Fascio improprio di rette parallele a una retta r.

TEOR

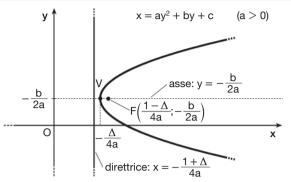
Le coniche

La parabola con asse parallelo all'asse y



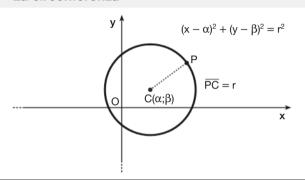
se a < 0 la concavità è rivolta verso il basso

La parabola con asse parallelo all'asse x

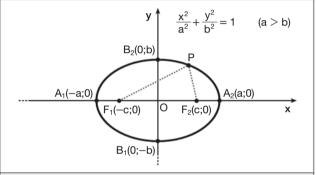


se a < 0 la concavità è rivolta nel verso opposto

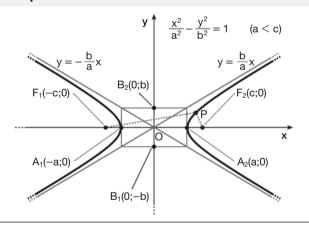
La circonferenza



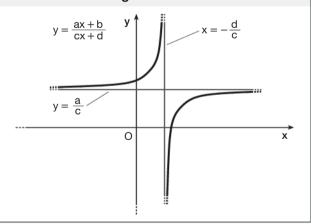
L'ellisse



L'iperbole

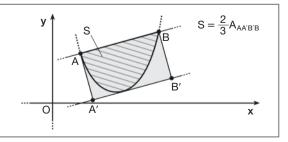


La funzione omografica



Il segmento parabolico

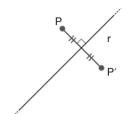
Tracciamo la retta parallela ad AB e tangente alla parabola, e consideriamo su di essa le proiezioni A' e B' di A e B. L'area del segmento parabolico è uguale a $\frac{2}{3}$ dell'area del rettangolo AA'B'B.



П

■ La simmetria assiale

Fissata nel piano una retta r, la **simmetria assiale rispetto alla retta** r è quella isometria che a ogni punto del piano P fa corrispondere il punto P' del semipiano opposto rispetto a r, in modo che r sia l'asse del segmento PP', ossia:



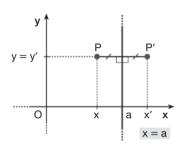
- r passa per il punto medio di PP';
- PP' è perpendicolare alla retta r.

La retta r è detta **asse di simmetria**.

Nel piano cartesiano prendiamo in esame le seguenti simmetrie assiali, fornendo le relative equazioni.

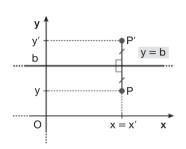
Simmetria con asse x = a (asse parallelo all'asse y)

$$\begin{cases} x' = 2a - x \\ y' = y \end{cases}$$



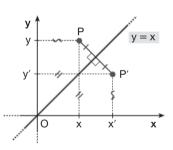
Simmetria con asse y = b (asse parallelo all'asse x)

$$\begin{cases} x' = x \\ y' = 2b - y \end{cases}$$



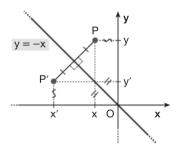
Simmetria con asse y = x (bisettrice del primo e terzo quadrante)

$$\begin{cases} x' = y \\ y' = x \end{cases}$$



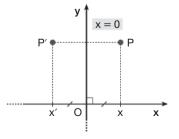
Simmetria con asse y = -x (bisettrice del secondo e quarto quadrante)

$$\begin{cases} x' = -y \\ y' = -x \end{cases}$$



Simmetria con asse x = 0 (asse y)

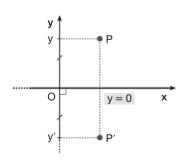
$$\begin{cases} x' = -x \\ y' = y \end{cases}$$



Due punti simmetrici rispetto all'asse *y* hanno ascisse opposte e la stessa ordinata.

Simmetria con asse y = 0 (asse x)

$$\begin{cases} x' = x \\ y' = -y \end{cases}$$



Due punti simmetrici rispetto all'asse *x* hanno la stessa ascissa e ordinate opposte.

GONIOMETRIA E TRIGONOMETRIA

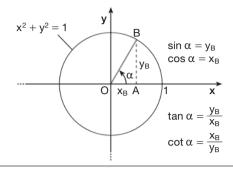
■ Le funzioni goniometriche

• La prima relazione fondamentale

$$\sin^2\alpha + \cos^2\alpha = 1$$

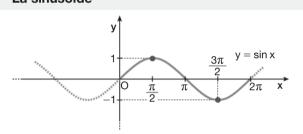
• La seconda relazione fondamentale

$$tan\alpha = \frac{sin\alpha}{cos\alpha}$$



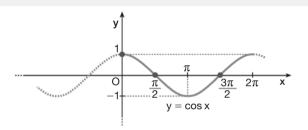
■ I grafici delle funzioni goniometriche

La sinusoide



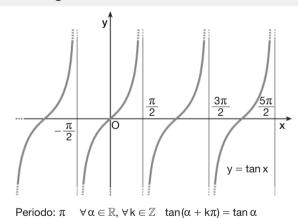
Periodo: $2\pi \quad \forall \alpha \in \mathbb{R}, \ \forall k \in \mathbb{Z} \quad \sin(\alpha + 2k\pi) = \sin \alpha$

La cosinusoide

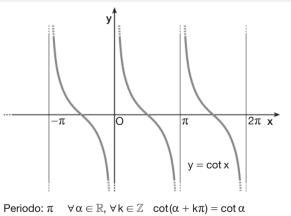


Periodo: $2\pi \quad \forall \alpha \in \mathbb{R}, \ \forall k \in \mathbb{Z} \quad \cos(\alpha + 2k\pi) = \cos \alpha$

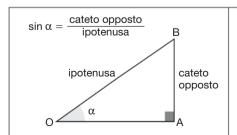
La tangentoide

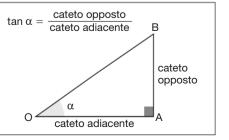


La cotangentoide

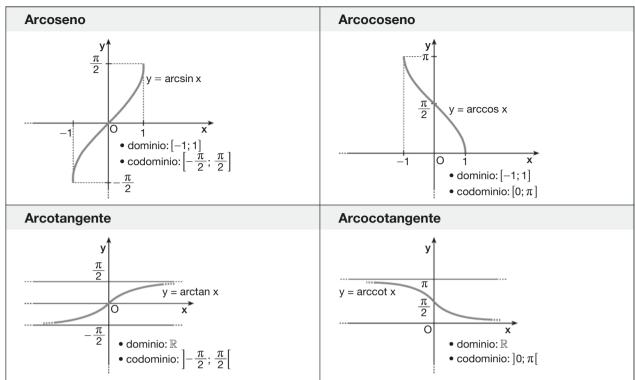


■ Seno, coseno e tangente su un triangolo rettangolo





■ Le funzioni goniometriche inverse

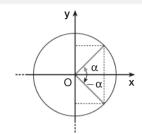


■ Seno, coseno, tangente e cotangente di angoli notevoli

radianti	gradi	seno	coseno	tangente	cotangente
0	0	0	1	0	non esiste
$\frac{\pi}{12}$	15°	$\frac{\sqrt{6}-\sqrt{2}}{4}$	$\frac{\sqrt{6}+\sqrt{2}}{4}$	$2-\sqrt{3}$	$2+\sqrt{3}$
$\frac{\pi}{10}$	18°	$\frac{\sqrt{5}-1}{4}$	$\frac{\sqrt{10+2\sqrt{5}}}{4}$	$\frac{\sqrt{25-10\sqrt{5}}}{5}$	$\sqrt{5+2\sqrt{5}}$
$\frac{\pi}{8}$	22°30′	$\frac{\sqrt{2-\sqrt{2}}}{2}$	$\frac{\sqrt{2+\sqrt{2}}}{2}$	$\sqrt{2}-1$	$\sqrt{2} + 1$
$\frac{\pi}{6}$	30°	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{3}}{3}$	$\sqrt{3}$
$\frac{\pi}{5}$	36°	$\frac{\sqrt{10-2\sqrt{5}}}{4}$	$\frac{\sqrt{5}+1}{4}$	$\sqrt{5-2\sqrt{5}}$	$\frac{\sqrt{25+10\sqrt{5}}}{5}$
$\frac{\pi}{4}$	45°	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$	1	1
$\frac{3}{10}\pi$	54°	$\frac{\sqrt{5}+1}{4}$	$\frac{\sqrt{10-2\sqrt{5}}}{4}$	$\frac{\sqrt{25+10\sqrt{5}}}{5}$	$\sqrt{5-2\sqrt{5}}$
$\frac{\pi}{3}$	60°	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	$\sqrt{3}$	$\frac{\sqrt{3}}{3}$
$\frac{2}{5}\pi$	72°	$\frac{\sqrt{10+2\sqrt{5}}}{4}$	$\frac{\sqrt{5}-1}{4}$	$\sqrt{5+2\sqrt{5}}$	$\frac{\sqrt{25-10\sqrt{5}}}{5}$
$\frac{5}{12}\pi$	75°	$\frac{\sqrt{6} + \sqrt{2}}{4}$	$\frac{\sqrt{6}-\sqrt{2}}{4}$	$2+\sqrt{3}$	$2-\sqrt{3}$
$\frac{\pi}{2}$	90°	1	0	non esiste	0

■ Funzioni goniometriche di angoli associati

$\alpha e - \alpha$



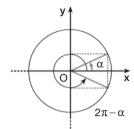
$$\sin(-\alpha) = -\sin\alpha$$

$$\cos(-\alpha) = \cos\alpha$$

$$\tan(-\alpha) = -\tan\alpha$$

$$\cot(-\alpha) = -\cot\alpha$$

α e $2\pi - \alpha$



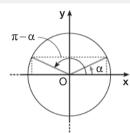
$$\sin(2\pi - \alpha) = -\sin\alpha$$

$$\cos(2\pi - \alpha) = \cos\alpha$$

$$\tan(2\pi - \alpha) = -\tan\alpha$$

$$\cot(2\pi - \alpha) = -\cot\alpha$$

$\alpha e \pi - \alpha$



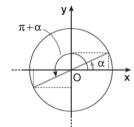
$$\sin(\pi - \alpha) = \sin \alpha$$

$$\cos(\pi - \alpha) = -\cos\alpha$$

$$\tan(\pi - \alpha) = -\tan\alpha$$

$$\cot(\pi - \alpha) = -\cot\alpha$$

$\alpha \in \pi + \alpha$



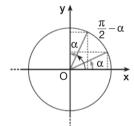
$$\sin(\pi + \alpha) = -\sin\alpha$$

$$\cos(\pi + \alpha) = -\cos\alpha$$

$$\tan(\pi + \alpha) = \tan\alpha$$

$$\cot(\pi + \alpha) = \cot\alpha$$

$$\alpha e \frac{\pi}{2} - \alpha$$



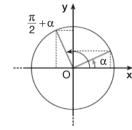
$$\frac{\pi}{2} - \alpha$$
 $\sin\left(\frac{\pi}{2} - \alpha\right) = \cos\alpha$

$$\cos\left(\frac{\pi}{2} - \alpha\right) = \sin\alpha$$

$$\tan\left(\frac{\pi}{2} - \alpha\right) = \cot\alpha$$

$$\cot\left(\frac{\pi}{2} - \alpha\right) = \tan\alpha$$

α e $\frac{\pi}{2}$ + α



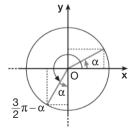
$$\sin\left(\frac{\pi}{2} + \alpha\right) = \cos\alpha$$

$$\cos\left(\frac{\pi}{2} + \alpha\right) = -\sin\alpha$$

$$\tan\left(\frac{\pi}{2} + \alpha\right) = -\cot\alpha$$

$$\cot\left(\frac{\pi}{2} + \alpha\right) = -\tan\alpha$$

$$\alpha e \frac{3}{2}\pi - \alpha$$



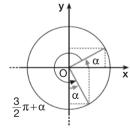
$$\sin\left(\frac{3}{2}\pi - \alpha\right) = -\cos\alpha$$

$$\Rightarrow$$
 $\cos\left(\frac{3}{2}\pi - \alpha\right) = -\sin\alpha$

$$\tan\left(\frac{3}{2}\pi - \alpha\right) = \cot\alpha$$

$$\cot\left(\frac{3}{2}\pi - \alpha\right) = \tan\alpha$$

α e $\frac{3}{2}\pi$ + α



$$\sin\left(\frac{3}{2}\pi + \alpha\right) = -\cos\alpha$$

$$\cot \cos \left(\frac{3}{2}\pi + \alpha\right) = \sin \alpha$$

$$\tan\left(\frac{3}{2}\pi + \alpha\right) = -\cot\alpha$$

$$\cot\left(\frac{3}{2}\pi + \alpha\right) = -\tan\alpha$$

■ Le formule goniometriche

Le formule di addizione

$$\sin(\alpha + \beta) = \sin\alpha\cos\beta + \cos\alpha\sin\beta$$

$$\cos(\alpha + \beta) = \cos\alpha\cos\beta - \sin\alpha\sin\beta$$

$$\tan(\alpha + \beta) = \frac{\tan\alpha + \tan\beta}{1 - \tan\alpha \cdot \tan\beta}$$

con
$$\alpha + \beta \neq \frac{\pi}{2} + k\pi$$
, $\alpha \neq \frac{\pi}{2} + k_1\pi$, $\beta \neq \frac{\pi}{2} + k_2\pi$

Le formule parametriche

$$\sin \alpha = \frac{2 \tan \frac{\alpha}{2}}{1 + \tan^2 \frac{\alpha}{2}}$$

$$\cos \alpha = \frac{1 - \tan^2 \frac{\alpha}{2}}{1 + \tan^2 \frac{\alpha}{2}}, \cos \alpha \neq \pi + 2k\pi$$

Le formule di sottrazione

$$\sin(\alpha - \beta) = \sin\alpha\cos\beta - \cos\alpha\sin\beta$$

$$\cos(\alpha - \beta) = \cos\alpha\cos\beta + \sin\alpha\sin\beta$$

$$\tan(\alpha - \beta) = \frac{\tan \alpha - \tan \beta}{1 + \tan \alpha \cdot \tan \beta}$$

con
$$\alpha - \beta \neq \frac{\pi}{2} + k\pi$$
, $\alpha \neq \frac{\pi}{2} + k_1\pi$, $\beta \neq \frac{\pi}{2} + k_2\pi$

Le formule di prostaferesi

$$\sin p + \sin q = 2\sin \frac{p+q}{2} \cdot \cos \frac{p-q}{2}$$

$$\sin p - \sin q = 2\cos\frac{p+q}{2} \cdot \sin\frac{p-q}{2}$$

$$\cos p + \cos q = 2\cos\frac{p+q}{2} \cdot \cos\frac{p-q}{2}$$

$$\cos p - \cos q = -2\sin\frac{p+q}{2} \cdot \sin\frac{p-q}{2}$$

Le formule di duplicazione

$$\sin 2\alpha = 2\sin \alpha\cos \alpha$$

$$\cos 2\alpha = \cos^2 \alpha - \sin^2 \alpha$$

$$\tan 2\alpha = \frac{2\tan\alpha}{1 - \tan^2\alpha}$$

Le formule di Werner

$$\sin \alpha \sin \beta = \frac{1}{2} [\cos(\alpha - \beta) - \cos(\alpha + \beta)]$$

$$\cos \alpha \cos \beta = \frac{1}{2} [\cos(\alpha + \beta) + \cos(\alpha - \beta)]$$

$$\sin \alpha \cos \beta = \frac{1}{2} [\sin(\alpha + \beta) + \sin(\alpha - \beta)]$$

Le formule di bisezione

$$\sin\frac{\alpha}{2} = \pm\sqrt{\frac{1-\cos\alpha}{2}}$$

$$\cos\frac{\alpha}{2} = \pm\sqrt{\frac{1+\cos\alpha}{2}}$$

$$\tan\frac{\alpha}{2} = \pm\sqrt{\frac{1-\cos\alpha}{1+\cos\alpha}}$$

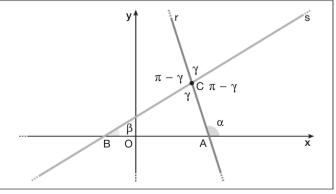
L'angolo fra due rette

$$r: y = mx + q,$$

$$s: y = m'x + q',$$

$$con m = tan \alpha$$
$$con m' = tan \beta$$

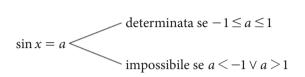
$$\tan \gamma = \tan(\alpha - \beta) = \frac{m - m'}{1 + mm'}.$$

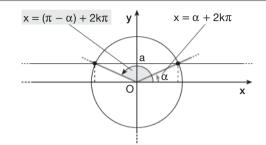


■ Equazioni goniometriche elementari

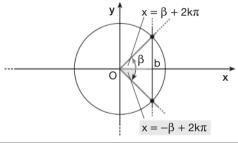
Un'**equazione** si dice **goniometrica** se contiene almeno una funzione goniometrica dell'incognita. Si chiamano **elementari** le equazioni goniometriche del tipo:

$$\sin x = a$$
, $\cos x = b$, $\tan x = c$.

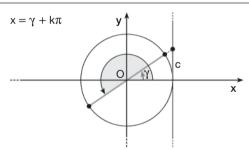




 $\cos x = b$ determinata se $-1 \le b \le 1$ impossibile se $b < -1 \lor b > 1$



 $\tan x = c$ determinata $\forall c \in \mathbb{R}$



Ci sono particolari equazioni elementari che si possono risolvere con le proprietà della seguente tabella.

Tipo di equazione	Proprietà
$\sin\alpha = \sin\alpha'$	$\sin \alpha = \sin \alpha' \leftrightarrow \alpha = \alpha' + 2k\pi \lor \alpha + \alpha' = \pi + 2k\pi$
$\sin\alpha = -\sin\alpha'$	$-\sin\alpha' = \sin(-\alpha')$
$\sin\alpha = \cos\alpha'$	$\cos\alpha' = \sin\left(\frac{\pi}{2} - \alpha'\right)$
$\sin\alpha = -\cos\alpha'$	$-\cos\alpha' = -\sin\left(\frac{\pi}{2} - \alpha'\right) = \sin\left(-\frac{\pi}{2} + \alpha'\right)$
$\cos \alpha = \cos \alpha'$	$\cos\alpha = \cos\alpha' \leftrightarrow \alpha = \pm\alpha' + 2k\pi$
$\cos \alpha = -\cos \alpha'$	$-\cos\alpha' = \cos(\pi - \alpha')$
$\tan\alpha=\tan\alpha'$	$\tan \alpha = \tan \alpha' \leftrightarrow \alpha = \alpha' + k\pi$
$\tan\alpha = -\tan\alpha'$	$-\tan\alpha'=\tan(-\alpha')$

Equazioni lineari in seno e coseno

$$a\sin x + b\cos x + c = 0$$

$$a \neq 0, b \neq 0$$

Metodo algebrico

- $c = 0 \rightarrow \text{si divide per } \cos x \neq 0 \rightarrow \tan x = -\frac{b}{a}$.
- $c \neq 0 \rightarrow \text{si determinano le eventuali soluzioni di tipo } x = \pi + 2k\pi;$ se $x \neq \pi + 2k\pi$, applicando le formule parametriche si ottiene

$$\begin{cases} t^2(c-b) + 2at + b + c = 0 \\ t = \tan\frac{x}{2} \end{cases}$$

Metodo grafico

Si sostituisce $Y = \sin x$ e $X = \cos x$ e si risolve quindi il sistema seguente:

$$\begin{cases} X^2 + Y^2 = 1\\ aY + bX + c = 0 \end{cases}$$

Metodo dell'angolo aggiunto

Si risolve il sistema seguente:

$$\begin{cases} \sin(x+\alpha) = -\frac{c}{r} \\ r = \sqrt{a^2 + b^2} \\ \tan \alpha = \frac{b}{a} \end{cases}$$

Equazioni omogenee di secondo grado in seno e coseno

$$a\sin^2 x + b\cos x\sin x + c\cos x^2 = 0$$

Primo metodo

- $a = 0 \rightarrow \cos x (b \sin x + c \cos x) = 0$
- $c = 0 \rightarrow \sin x (a \sin x + b \cos x) = 0$
- $a \neq 0 \land c \neq 0 \rightarrow \text{ si divide per } \cos^2 x \neq 0 \rightarrow a \tan^2 x + b \tan x + c = 0$

Secondo metodo

Sostituendo $\begin{cases} \sin x \cos x = \frac{\sin 2x}{2} \\ \sin^2 x = \frac{1 - \cos 2x}{2} \text{ si ottiene un'equazione lineare.} \\ \cos^2 x = \frac{1 + \cos 2x}{2} \end{cases}$

Un'equazione lineare della forma

$$a\sin^2 x + b\sin x \cos x + c\cos^2 x = d \qquad (d \neq 0)$$

è riconducibile a un'equazione omogenea sostituendo $d = d(\cos^2 x + \sin^2 x)$.

Disequazioni goniometriche

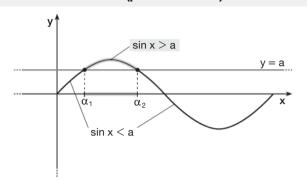
Primo metodo

Si studia la posizione reciproca tra il grafico della funzione goniometrica e la retta y = a.

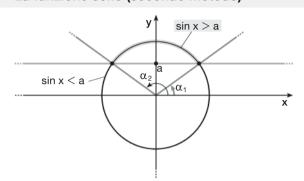
Secondo metodo

Si disegna la circonferenza goniometrica, si risolve l'equazione associata, si determinano gli archi in cui è soddisfatta.

La funzione seno (primo metodo)



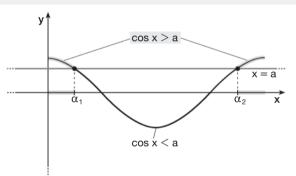
La funzione seno (secondo metodo)



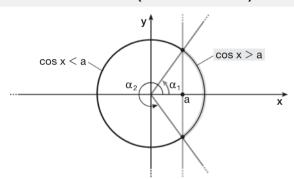
$$\sin x > a \rightarrow \alpha_1 + 2k\pi < x < \alpha_2 + 2k\pi;$$

$$\sin x > a \rightarrow \alpha_1 + 2k\pi < x < \alpha_2 + 2k\pi;$$
 $\sin x < a \rightarrow 0 + 2k\pi < x < \alpha_1 + 2k\pi \lor \alpha_2 + 2k\pi < x < 2\pi + 2k\pi$

La funzione coseno (primo metodo)



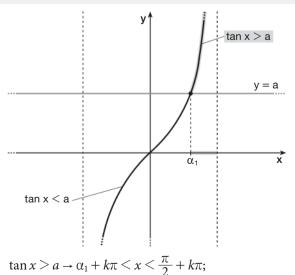
La funzione coseno (secondo metodo)



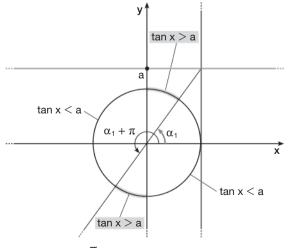
$$\cos x > a \to 0 + 2k\pi \le x \le \alpha_1 + 2k\pi \lor \alpha_2 + 2k\pi \le x \le 2\pi + 2k\pi;$$
 $\cos x \le a \to \alpha_1 + 2k\pi \le x \le \alpha_2 + 2k\pi$

$$\cos x \le a > a + 2k\pi \le x \le a + 2k\pi$$

La funzione tangente (primo metodo)



La funzione tangente (secondo metodo)



$$\tan x < a \to -\frac{\pi}{2} + k\pi < x < \alpha_1 + k\pi$$

GEOMETRIA ANALITICA NELLO SPAZIO

Distanza fra due punti e punto medio

- La distanza fra due punti $A(x_A; y_A; z_A)$ e $B(x_B; y_B; z_B)$ è: $\overline{AB} = \sqrt{(x_B x_A)^2 + (y_B y_A)^2 + (z_B z_A)^2}$.
- Le coordinate del **punto medio** *M* di un segmento *AB* sono:

$$x_M = \frac{x_A + x_B}{2}, y_M = \frac{y_A + y_B}{2}, z_M = \frac{z_A + z_B}{2}.$$

Vettori nello spazio

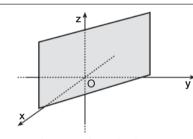
- A ogni punto $A(a_x; a_y; a_z)$ è associato un vettore $\overrightarrow{OA} = \overrightarrow{a} = a_x \overrightarrow{i} + a_y \overrightarrow{j} + a_z \overrightarrow{k}$ con modulo $|\vec{a}| = \sqrt{a_x^2 + a_y^2 + a_z^2}$.
- Dati i punti $A(x_A; y_A; z_A)$ e $B(x_B; y_B; z_B)$, il vettore da essi individuato è $\overrightarrow{AB}(x_B x_A; y_B y_A; z_B z_A)$.
- Operazioni con due vettori $\vec{a}(a_x; a_y; a_z)$ e $\vec{b}(b_x; b_y; b_z)$:
 - somma: $\vec{a} + \vec{b} = (a_x + b_x; a_y + b_y; a_z + b_z);$
 - differenza: $\vec{a} \vec{b} = (a_x b_x; a_y b_y; a_z b_z)$.
- \vec{a} e \vec{b} sono paralleli se $\vec{a} = k\vec{b}$, con $k \in \mathbb{R}$, $\vec{b} \neq \vec{0}$ cioè: \vec{a} e \vec{b} sono perpendicolari se $\vec{a} \cdot \vec{b} = 0$, cioè: $\vec{a} / / \vec{b} \leftrightarrow \frac{a_x}{b_x} = \frac{a_y}{b_y} = \frac{a_z}{b_z}$
- prodotto per uno scalare: $k\vec{a} = (ka_x; ka_y; ka_z)$. prodotto scalare: $\vec{a} \cdot \vec{b} = a_x b_x + a_y b_y + a_z b_z$.

 - $\vec{a} \perp \vec{b} \leftrightarrow a_x b_x + a_y b_y + a_z b_z = 0.$

Punti, piani e rette

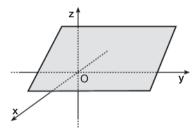
• L'equazione generale del piano passante per $P_0(x_0; y_0; z_0)$ con vettore normale $\vec{n}(a; b; c)$ è:

$$a(x-x_0) + b(y-y_0) + c(z-z_0) = 0 \rightarrow ax + by + cz + d = 0.$$



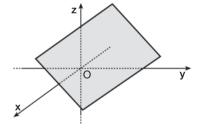
piano ax + by + d = 0

c = 0: il vettore normale è (a; b; 0), il piano è parallelo all'asse z e perpendicolare al piano Oxy.



piano ax + cz + d = 0

b = 0: il vettore normale è (a; 0; c), il piano è parallelo all'asse y e perpendicolare al piano Oxz.

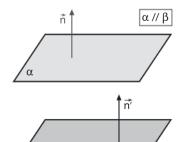


piano by + cz + d = 0

a = 0: il vettore normale è (0; b; c), il piano è parallelo all'asse x e perpendicolare al piano Oyz.

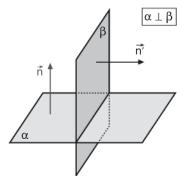
- Due piani di equazioni ax + by + cz + d = 0 e a'x + b'y + c'z + d' = 0 sono:
 - paralleli se

$$\vec{n} / / \vec{n'} \rightarrow \frac{a}{a'} = \frac{b}{b'} = \frac{c}{c'} (\text{se } a', b', c' \neq 0);$$



- perpendicolari se

$$\vec{n} \perp \vec{n'} \rightarrow \vec{n} \cdot \vec{n'} = 0 \rightarrow aa' + bb' + cc' = 0.$$



• La **distanza** del **punto** $A(x_A; y_A; z_A)$ dal **piano** α di equazione ax + by + cz + d = 0 è:

$$d(A, \alpha) = \frac{\left| ax_A + by_A + cz_A + d \right|}{\sqrt{a^2 + b^2 + c^2}}.$$

• La **retta** passante per $P_0(x_0; y_0; z_0)$ con vettore direzione $\vec{v}(l; m; n)$ non nullo ha **equazioni parametriche**

$$\begin{cases} x = x_0 + kl \\ y = y_0 + km, & \text{con } k \in \mathbb{R}, \\ z = z_0 + kn \end{cases}$$

ed **equazioni cartesiane**, valide se $l, m, n \neq 0$,

$$\frac{x-x_0}{l} = \frac{y-y_0}{m} = \frac{z-z_0}{n}.$$

• La retta passante per due punti $A(x_1; y_1; z_1)$ e $B(x_2; y_2; z_2)$ ha equazioni

$$\frac{x-x_1}{x_2-x_1}=\frac{y-y_1}{y_2-y_1}=\frac{z-z_1}{z_2-z_1},$$

che sono le **condizioni di allineamento** di tre punti A, B e P(x; y; z).

• Una retta può essere individuata come intersezione di due piani non paralleli:

$$\begin{cases} ax + by + cz + d = 0 \\ a'x + b'y + c'z + d' = 0. \end{cases}$$

• Due rette con vettori direzione $\vec{v}(l; m; n)$ e $\vec{w}(l'; m'; n')$ sono:

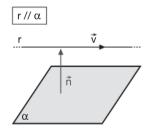
- parallele se
$$\vec{v}$$
 // $\vec{w} \rightarrow \frac{l}{l'} = \frac{m}{m'} = \frac{n}{n'}$ (se $l', m', n' \neq 0$);

- perpendicolari se
$$\vec{v} \perp \vec{w} \rightarrow \vec{v} \cdot \vec{w} = 0 \rightarrow ll' + mm' + nn' = 0$$
.

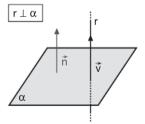
• Un piano con vettore normale $\vec{n}(a;b;c)$ e una retta con vettore direzione $\vec{v}(l;m;n)$ sono:

- paralleli se

$$\vec{n} \perp \vec{v} \rightarrow al + bm + cn = 0;$$



$$\vec{n} // \vec{v} \rightarrow \frac{a}{l} = \frac{b}{m} = \frac{c}{n} \text{ (se } l, m, n \neq 0 \text{)}.$$



Superficie sferica

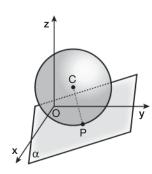
• Una **superficie sferica** di centro $C(x_0; y_0; z_0)$ e raggio r ha **equazione**:

$$(x-x_0)^2 + (y-y_0)^2 + (z-z_0)^2 = r^2.$$

L'equazione $x^2 + y^2 + z^2 + ax + by + cz + d = 0$ rappresenta una sfera di centro

$$C\left(-\frac{a}{2}; -\frac{b}{2}; -\frac{c}{2}\right)$$
 e raggio $r = \sqrt{\frac{a^2}{4} + \frac{b^2}{4} + \frac{c^2}{4} - d}$ se $\frac{a^2}{4} + \frac{b^2}{4} + \frac{c^2}{4} - d \ge 0$.

• Un piano α è tangente a una sfera di raggio r e centro C se $d(C, \alpha) = r$.



LIMITI E FUNZIONI CONTINUE

■ Le operazioni sui limiti

Indichiamo con α un valore che può essere $x_0 \in \mathbb{R}, x_0^+, x_0^-, +\infty, -\infty$. Per i limiti della somma, del prodotto e del quoziente di due funzioni si ha la seguente tabella.

$\lim_{x\to\alpha}f(x)$	$\lim_{x\to a} g(x)$	$\lim_{x\to a} [f(x) + g(x)]$	$\lim_{x\to a} [f(x)\cdot g(x)]$	$\lim_{x \to \alpha} \frac{f(x)}{g(x)}$
			X - W	
$l \in \mathbb{R}$	$m \in \mathbb{R}$ $m \neq 0$	m+l	m·l	$\frac{l}{m}$
$l \in \mathbb{R}$, $l \neq 0$	0	l	0	$+\infty$, se $\frac{f(x)}{g(x)} > 0$ per $x \to \alpha$ $-\infty$, se $\frac{f(x)}{g(x)} < 0$ per $x \to \alpha$
0	0	0	0	forma indeterminata " $\frac{0}{0}$ "
$l \in \mathbb{R}$ $l \neq 0$	+∞	+∞	$+\infty$, se $l > 0$ $-\infty$, se $l < 0$	0
$l \in \mathbb{R}$ $l \neq 0$	$-\infty$	$-\infty$	$+\infty$, se $l < 0$ $-\infty$, se $l > 0$	0
+∞	$m \in \mathbb{R}$, $m \neq 0$	+∞	$+\infty$, se $m > 0$ $-\infty$, se $m < 0$	$+\infty$, se $m > 0$ $-\infty$, se $m < 0$
$-\infty$	$m \in \mathbb{R}$, $m \neq 0$	$-\infty$	$+\infty$, se $m < 0$ $-\infty$, se $m > 0$	$+\infty$, se $m < 0$ $-\infty$, se $m > 0$
+∞	0	$+\infty$	forma indeterminata " $0 \cdot \infty$ "	$+\infty$, se $\frac{f(x)}{g(x)} > 0$ per $x \to \alpha$
$-\infty$		$-\infty$		$-\infty$, se $\frac{f(x)}{g(x)} < 0$ per $x \to \alpha$
+∞	+∞	+∞	+∞	forma indeterminata " $\frac{\infty}{\infty}$ "
+∞	$-\infty$	forma indeterminata " $+\infty-\infty$ "	$-\infty$	forma indeterminata " $\frac{\infty}{\infty}$ "
$-\infty$	+∞	forma indeterminata " $+\infty-\infty$ "	$-\infty$	forma indeterminata " $\frac{\infty}{\infty}$ "
$-\infty$	$-\infty$	$-\infty$	+∞	forma indeterminata " $\frac{\infty}{\infty}$ "

Limiti di funzioni polinomiali e funzioni razionali

• $\lim_{x \to \pm \infty} a_0 x^n + a_1 x^{n-1} + \dots + a_n = \lim_{x \to \pm \infty} a_0 x^n = \infty$ con segno dato dalla regola dei segni del prodotto.

$$\lim_{x \to \pm \infty} \frac{a_0 x^n + a_1 x^{n-1} + \dots + a_n}{b_0 x^m + b_1 x^{m-1} + \dots + b_m} = \begin{cases} \pm \infty \text{ se } n > m \\ \frac{a_0}{b_0} \text{ se } n = m \\ 0 \text{ se } n < m \end{cases}$$

Limiti notevoli

•
$$\lim_{x \to 0} \frac{\sin x}{x} = 1$$
 • $\lim_{x \to \pm \infty} (1 + \frac{1}{x})^x = e$, dove e è un numero irrazionale, $e \simeq 2,7182...$

•
$$\lim_{x \to 0} \frac{1 - \cos x}{x} = 0$$
 • $\lim_{x \to 0} \frac{\ln(1+x)}{x} = 1$ • $\lim_{x \to 0} \frac{1 - \cos x}{x^2} = \frac{1}{2}$ • $\lim_{x \to 0} \frac{e^x - 1}{x} = 1$

Gerarchia degli infiniti

Date le tre famiglie di funzioni:

$$(\log_a x)^{\alpha}$$
, x^{β} , b^x , con α , $\beta > 0$ e a , $b > 1$,

allora, per $x \to +\infty$, ognuna è un infinito di ordine inferiore rispetto a quella che si trova a destra, cioè:

$$\lim_{x \to +\infty} \frac{(\log_a x)^{\alpha}}{x^{\beta}} = 0, \quad \lim_{x \to +\infty} \frac{x^{\beta}}{b^x} = 0.$$

Sinteticamente, possiamo scrivere:

$$(\log_a x)^{\alpha} < x^{\beta} < b^x$$
.

Le forme indeterminate

La forma indeterminata $+\infty -\infty$

Limite di funzione polinomiale

$$\lim_{x \to +\infty} (x^3 - 4x + 5) = \lim_{x \to +\infty} x^3 = +\infty$$

• Utilizzare la gerarchia degli infiniti

$$\lim_{x \to +\infty} \ln x - e^x = \lim_{x \to +\infty} e^x \left(\frac{\ln x}{e^x} - 1 \right) = -\infty$$

Razionalizzazione

$$\lim_{x \to +\infty} \sqrt{x+2} - \sqrt{x+5} = \lim_{x \to +\infty} (\sqrt{x+2} - \sqrt{x+5}) \cdot \frac{\sqrt{x+2} - \sqrt{x+5}}{\sqrt{x+2} + \sqrt{x+5}} = \lim_{x \to +\infty} \frac{\cancel{x} + 2 - \cancel{x} - 5}{\sqrt{x+2} + \sqrt{x+5}} = 0$$

La forma indeterminata $0 \cdot \infty$

$$\lim_{x \to 0} [(1 - \cos 2x) \cdot \cot x] = \lim_{x \to 0} (2 \sin^2 x \cdot \frac{\cos x}{\sin x}) = \lim_{x \to 0} (2 \sin x \cos x) = 0$$

La forma indeterminata $\frac{\infty}{\infty}$

• Rapporto di funzioni polinomiali

$$\lim_{x \to +\infty} \frac{x^2 + 2x + 1}{x^3 + 2} = \lim_{x \to +\infty} \frac{x^2 \left(1 + \frac{2}{x} + \frac{1}{x^2}\right)}{x^3 \left(1 + \frac{2}{x^3}\right)} = 0$$

• Utilizzare il teorema di De L'Hospital

$$\lim_{x \to +\infty} \frac{\ln(x^2 + 1)}{\ln(x + 1)} = \lim_{x \to +\infty} \frac{\frac{1}{x^2 + 1} \cdot 2x}{\frac{1}{1 + x}} = \lim_{x \to +\infty} \frac{2x(1 + x)}{x^2 + 1} = \lim_{x \to +\infty} \frac{2x + 2x^2}{x^2 + 1} = 2$$

La forma indeterminata $\frac{0}{0}$

• Utilizzare il teorema di Ruffini per scomporre sia il numeratore sia il denominatore

$$\lim_{x \to 1} \frac{x^2 + x - 2}{x^2 - 1} = \lim_{x \to 1} \frac{(x - 1)(x + 2)}{(x - 1)(x + 1)} = \frac{3}{2}$$

• Utilizzare il teorema di De L'Hospital

$$\lim_{x \to -1} \frac{-x^3 + 3x^2 + 9x + 5}{x^2 - 7 - 6x} = \lim_{x \to -1} \frac{-3x^2 + 6x + 9}{2x - 6} = 0$$

La forma indeterminata 1[∞]

Utilizzare il limite notevole $\lim_{x \to +\infty} \left(1 + \frac{1}{x}\right)^x = e^{-\frac{1}{x}}$

$$\lim_{x \to +\infty} \left(\frac{x+1}{x-2} \right)^x = \lim_{x \to +\infty} \left(1 + \frac{3}{x-2} \right)^{x-2+2} = \lim_{x \to +\infty} \left(1 + \frac{3}{x-2} \right)^{x-2} \cdot \left(1 + \frac{3}{x-2} \right)^2 = e^3 \cdot 1 = e^3$$

La forma indeterminata ∞^0

$$\lim_{x \to +\infty} x^{\frac{1}{x}} = \lim_{x \to +\infty} e^{\ln x^{\frac{1}{x}}} = \lim_{x \to +\infty} e^{\frac{\ln x}{x}} = 1 \quad \text{(poiché } \lim_{x \to +\infty} \frac{\ln x}{x} = 0 \text{ per la gerarchia degli infiniti)}$$

■ Gli asintoti e la loro ricerca

